1 Checking identifiability of the process parameters

Since the marginal distribution of \mathbf{y} is a multivariate normal, we only need check the identifiability of the parameters in the first two moments, i.e., the mean vector and the covariance matrix of \mathbf{y} . In particular, we consider the parameters in $\Sigma_{\mathbf{y}}(\boldsymbol{\theta}_2, \boldsymbol{\theta}_3)$. The less obvious situation arises when \mathbf{A} has structure "LT". Then,

$$\begin{aligned} \mathsf{VAR}\left\{\mathbf{y}\left(t_{i}\right)\right\} &= \begin{bmatrix} a_{1}^{2} & a_{1}a_{3} \\ a_{1}a_{3} & a_{2}^{2} + a_{3}^{2} \end{bmatrix} + \begin{bmatrix} \tau_{1} & \tau_{12} \\ \tau_{12} & \tau_{2} \end{bmatrix} \\ \mathsf{COV}\left\{\mathbf{y}\left(t_{i}\right),\mathbf{y}\left(t_{j}\right)\right\} &= \begin{bmatrix} a_{1}^{2}\rho_{1}(\varphi_{1};t_{i},t_{j}) & a_{1}a_{3}\rho_{1}(\varphi_{1};t_{i},t_{j}) \\ a_{1}a_{3}\rho_{1}(\varphi_{1};t_{i},t_{j}) & a_{2}^{2}\rho_{2}(\varphi_{2};t_{i},t_{j}) + a_{3}^{2}\rho_{1}(\varphi_{1};t_{i},t_{j}) \end{bmatrix} \end{aligned}$$

where $i, j \in \{1, \dots, n\}$ and $i \neq j$. Switching a_1^2 and τ_1 will still render the same VAR $\{\mathbf{y}(t_i)\}$ but it will affect COV $\{\mathbf{y}(t_i), \mathbf{y}(t_j)\}$, which ensures identifiability. The consequence is similar when we switch a_1a_3 and τ_{12} , or $a_2^2 + a_3^2$ and τ_2 . Therefore, we can say that the a's and τ 's are identifiable. Likewise, if we switch a_k^2 and $\rho_k(\varphi_k; t_i, t_j)$ in COV $\{\mathbf{y}(t_i), \mathbf{y}(t_j)\}$, it impacts VAR $\{\mathbf{y}(t_i)\}$, where $k = \{1, 2\}$. Therefore, the a's and ρ 's are also identifiable.

We point out the need to impose a restriction on the domain of a_1 and a_2 . In particular, notice that $(a_1 = x, a_3 = y)$ and $(a_1 = -x, a_3 = -y)$, where x > 0 and y > 0, returns the same VAR $\{\mathbf{y}(t_i)\}$ and COV $\{\mathbf{y}(t_i), \mathbf{y}(t_j)\}$. Likewise, when $a_2 = z$ and $a_2 = -z$, where $z \neq 0$. Therefore, to ensure identifiability of these parameters, we restrict a_1 and a_2 to be greater than 0.